All columns anomalies
elementary.all_columns_anomalies
Overview
The all_column_anomalies
test applies column-level monitoring and anomaly detection across all table columns, activating monitors based on the column's data type. Customize the test with column_anomalies
to specify monitors, and use exclude_prefix
or exclude_regexp
to skip columns based on naming patterns or regex matches, focusing the test on relevant data.
Default monitors by type:
Data quality metric | Column Type |
---|---|
null_count | any |
null_percent | any |
min_length | string |
max_length | string |
average_length | string |
missing_count | string |
missing_percent | string |
min | numeric |
max | numeric |
average | numeric |
zero_count | numeric |
zero_percent | numeric |
standard_deviation | numeric |
variance | numeric |
Opt-in monitors by type:
Data quality metric | Column Type |
---|---|
sum | numeric |
Test configuration
_10tests:_10 - elementary.all_columns_anomalies:_10 {{ parameters }}
where {{ parameters }}
:
- timestamp_column: column name
- column_anomalies: column monitors list
- exclude_prefix: string
- exclude_regexp: regex
- where_expression: SQL expression
- anomaly_sensitivity: int
- anomaly_direction: [both | spike | drop]
- detection_period:
- training_period:
- time_bucket:
- seasonality: day_of_week
- detection_delay:
- ignore_small_changes:
- anomaly_exclude_metrics: [SQL expression]